TU Ilmenau Humbold Bau

Projektdaten



Matrixbüschel und lineare Relationen


Hochschule
TU Ilmenau
Fakultät/Einrichtung
Mathematik und Naturwissenschaften
Förderkategorie
DFG
Zeitraum
2022 - 2023
Drittmittelgeber
Deutsche Forschungsgemeinschaft
Stichwort
Bewilligungssumme, Auftragssumme
6.100,00 €

Abstract:

1. Develop a perturbation theory for one-dimensional perturbations of the four different types of chains of a linear relation. 2. Translate the perturbation results for the different types of chains of a linear relation into perturbation results for Kronecker canonical Indices of matrix pencils. This is done by the use of the kerne! and/or range representations. 3. Compare the obtained results with the results of Prof. A. Roca and Prof. 1. Baraga-na. 4. Generalize the above results to two-dimensional perturbations. And, in the same way, one can try to investigate finite-dimensional perturbations. Similar results will also hold for operator pencils. 5. Redesign procedures for circuit design in terms of pole placement, robustness and stability.
Projektsuche | Impressum | FAQ